
 /J7

N91-17577

Verification of Floating-Point Software

D. N. I loover

()dyssey l/esear_qt Associates, Ithaca NY

Abstract

Floating point _:omputation presents a mimber of i_roblems for for-

real verilication. Shouhl one treat the actual details of Iloating point

operations, or accept them as imprecisely defined? or should one

ignore rouml-off error altogether, and behave as if lloating point op-

erations are perfl:l:tly a_:(:urate? There is the further problem that a

numerical Mgorithm usually only approximately computes some math-

ematical function, and we often do not know just how good the ap-

proximation is, even in the absence of round-off error.

()II.A has developed a theory of asymptotic _:orrectness whidl al-

lows one to w;rify Iloating point software with a minimum entangle-

merit in these problems. We describe this theory and its imph:metl-

tation in the Ariel C verilication _ystem, also developed at OItA. We

illustrate the theory using a _imple prograni which tinds a zero of a

g,iVeli fun{:tilln by llisel:tiiln.

Verification of Floating-Point Software

Douglas Hoover

Odyssey Research Associates, Inc.

Difficulties

• Machine real arithmetic does not have nice

mathematical properties

• Doesn't match ideal arithmetic (overflow, round-

off, underflow)

• Programs don't satisfy the specification we'd

like them to

Odyssey Research Associates, Inc.

Asymptotic Correctness

• Specify "ideal behavior" of the program (e.g.

"program computes the square root of its in-

put")

• Verify that if program is run on a sequence of

machines converging to perfect accuracy, then

program's behavior converges to ideal behav-

ior

Odyssey Research Associates, Inc.

Advantages of the Asymptotic Approach

• Machine real arithmetic can be specified loosely

• Specifications can be written in terms of ideal
behavior

• Verification does not require roundoff error anal-

ysis

• Verifies logical correctness _ absence of "bugs"

from inaccuracy of machine arithmetic that

are not related to error magnitude.

Odyssey Research Associates, Inc.

Nonstandard analysis

Standard part map

RC*R

st" *R ---_ R

rounds off a finite nonstandard rcal to an infinitely closc stan-

dard real.

Continuity

f is continuous at (al,... ,a,,) if

._t(f(ai,...,a,,)) = f(st(at),...,st(a,))

Differentiation by algebraic manipulation

Let st(e) = 0, e # 0. For all standard x,

d(X2)dx - st ((x+e)2-x2)e

= st(2ex+e2)e

= st(2:,"+ e)
-- 2x

Nonstandard Analysis

• Asymptotic approach can be formalized natu-

rally in nonstandard analysis using infinitesi-
mals

• Primitive operations are assumed to return

values which are infinitely close to the ideal

values when the arguments and ideal answers
are finite

• Programs are specified to have behaviors in-

finitely close toideal behavior when inputs are
finite

Odyssey Research Associates, Inc.

Finding Roots of a Continuous Function

• find_zero searchs for a root of a user-supplied

function F by bisection.

• At each iteration, it tests to see if the values

of F at the left endpoint and the midpoint

are of opposite sign, and changes one of the

endpoints to the midpoint so as to keep a root

between the two endpoints.

• The program terminates when it finds a root
or when it reachs a user-supplied bound on

the number of iterations.

Odyssey Research Associates, Inc.

float find_zero(leftO,rightO,maxit)

float leftO0rightO;

±nt maxit;

{

float left,right,center;

float cval,lvalO,rvalO;

int numit;

numit = O;

lvalO = F(lefZO);

rvalO = F(righ%0);

lefZ = leftO;

right - rightO;

center = (lefZ + right)/2.0;

cval= F(center);

while(cval != 0.0 &_ numit < maxit) {

if (ivalO *cval < O)

right = center;

else

left = center;

center = (left + right)/2.0;

cval= F(center);

lvalO = F(left);

numi% = numiZ + 1;

}

}

return(center);

Odyssey Research Associates, Inc.

Specification of find_zero

IF F is continuous and find_zero is started UP
with

• leftO and rightO not "large";

• maxit "large";

• F(left0) and F(right0) of opposite sign

THEN find_zero terminates normally (i.e. with-

out an exception) and the value output is "close
to" some zero of F.

Odyssey Research Associates, Inc.

Attempted Verification

• Proof of termination is easy.

• Proof that termination is normal is a bit harder.

Must prove that no overflow happens. To prove

this, must prove that the values of the end-

points stay in some range of numbers which

are not "large".

Odyssey Research Associates, Inc.

How would we prove that the program returns an

approximation to a root?

• Prove when the program terminates, the end-

points are "close". This follows from the fact

that the program halves the interval a "large"
number of times.

• Prove there's always a root between the end-

points. This should follow from the way the

program decides whether to move the left end-

point or the right. From this we'd get center
"close to" a root.

Unfortunately, it's not true that there's always

a root between the endpoints.

Odyssey Research Associates, Inc.

The Bug

• In the test statement, can have lvalO and

cval of opposite sign, but have the product

underflow to O. This causes the program to

move the wrong endpoint.

• Tests bear out this bug.

Odyssey Research Associates, Inc.

Possible Fixes

Several ways to fix this bug

• Change test to

(ivalO < 0 aa cval >= O) II

(ivalO >= 0 _& cval < O)

s Change test so instead of always testing left

endpoint against midpoint, it always tests the

endpoint with the larger value of F against the

midpoint.

This doesn't necessarily keep a root between

the endpoints, but it delivers an approxima-

tion to a root anyway.

Odyssey Research Associates, Inc.

Ariel

• Verification system for subset of C including

real arithmetic and some UNIX system calls.

• Implements nonstandard formalization of the

asymptotic approach.

Odyssey Research Associates, Inc.

Semantic Verification

• Ariel verifies programs by generating a de-

scription of the program's denotation in a higher-

order language (the Clio metalanguage)

• Specifications are statements about

tation in the Clio metalanguage

the dcno-

• Verification is a proof of the specification di-

rectly from the description of the denotation

in Clio theorem prover

• Specifications can be any statement about the

program's denotation which can be expresse_l

in the Clio, including termination

Odyssey Research Associates, Inc.

ORIGINAL PAGE IS

OF POOR QUILl13'

C Semantics

• A "run" of tile program is modeled as a se-

quence of events

• Events are:

- the event of going into a certain state

-terminating and returning a value

- terminating and returning no value

-raising an exception

-an "unknown" event

• The semantics of tim program is expressed as a

collection of axioms saying which sequences of

events can happen in the course of executing

the program.

Odyssey Research Associates, Inc.

Sample Verifications

• ZBRENT a program which finds zeros of a

continuous flmction by bisection

• SWAP a very simple program to swap the
contents of 2 locations which contains a sur-

prising bug

• HOSTILE BOOSTER a suite of t)rogr_ms,

developed by Applied Technology Associates

for SDIO, that estimate hostile booster trajec-

tories. This verification is currently in progress.

• SECURE DEVICE DRIVER specification

and verification of security for an Ethernet de-

vice driver. Currently in progress.

Odyssey Research Associates, lnc,

